

Faculty of Engineering & Technology

Thermal Power Systems

Information:

Course Code: MPR 355 Level: Undergraduate Course Hours: 3.00- Hours

Department: Specialization of Mechatronics Engineering

Instructor Information:

Title	Name	Office hours		
Lecturer	Anas Mohamed Abdelrahman Ali			
Assistant Lecturer	Zakaria Mostafa Abdo Salim Marouf	10		

Area Of Study:

This course aims to:

- *Ænrich the student Understanding about fundamentals of Thermal Power Systems
- **Prepare the student to apply the fundamental principles of Thermodynamics and Fluid Mechanics
- "Árrain the student to Explore the fundamental principles of Heat Engines through analysis and experimentation
- ÁDevelop the student skills for analyzing engines data and working in teams
- "Arain the student to share ideas and work in a team."

Description:

Basic characteristics, analysis and performance of different types of engines and thermal power systems, including: steam power, combined cycles, petrol engines, diesel engines, gas turbines and jet engines. Latest developments in automotive engines technology.

Course outcomes:

a.Knowledge and Understanding: :

- 1 Identify principles in the field of design of fluid flow, thermodynamics, gas dynamics, turbo- machinery, heat transfer engineering and fundamentals of thermal and fluid processes.
- 2 Describe conceptual and detailed design of fluid power systems.
- 3 Explain the constraints which mechanical power engineers have to judge to reach at an optimum solution for thermal power systems.
- 4 Describe basic types of internal combustion engines and vapor power plants.

b.Intellectual Skills::

- 1 Derive different solution alternatives for the engineering problems in thermal power systems.
- 2 Evaluate different power losses.
- 3 Analyze the performance of the basic types of internal combustion engines and vapor power plants.

c.Professional and Practical Skills: :

- 1 Classify different types of internal combustion engines based on different criteria.
- 2 Connect engine performance to design parameters, fuels and environmental conditions.

d.General and Transferable Skills::

- 1 Write reports in accordance with the standard scientific guidelines.
- 2 Use digital libraries and/or Learning systems and demonstrate efficient IT capabilities.

Course Topic And Contents :			
Topic	No. of hours	Lecture	Tutorial / Practical
Ideal Air and Gas Power Cycles(Otto Cycle . APetrol Engine)	4	2	2
Ideal Air and Gas Power Cycles(Diesel Engine, Brayton Cycles-Gas Turbine)	8	4	4
Vapor Power Cycles (Basic Rankine and Superheat Cycles) + Midterm Examination 1	8	4	4
Improving Efficiency of Vapor Power Cycles (Reheat, Regeneration and Co-generation)	4	2	2
Improving Efficiency of Vapor Power Cycles (Combined and Binary Cycles)	4	2	2
Actual Cycles, Reheat, Regeneration	8	4	4
Gas Turbines and Jet Propulsion Systems (Jet Propulsion, Modifications to Turbojet Engines, Ramjets) + Mid-term Examination 2	8	4	4
Revision of Basic Principles of Thermodynamics (Definitions, Concepts, Fluid Properties Fundamental Laws)	8	4	4
Operating Characteristics of Reciprocating Engines(Engine Parameters, Efficiencies, Emissions and Noise)	8	4	4

Teaching And Learning Methodologies:

Interactive Lecture

Problem based learning

Discussion

Experimental learning

Project based learning

Research

Course Assessment :					
Methods of assessment	Relative weight %	Week No	Assess What		
Assignment	10.00	11			
Final Exam	40.00	16			
Mid- Exam 1I	15.00	11			
Mid- Exam I	15.00	6			
Participation	10.00	16			
Research	5.00	9			

Recommended books:

"Thermodynamics an Engineering Approach", Seventh Edition, 2011, By: Yunus Cengel and Michael A. Boles, Mc Graw Hill